Basic Probability Formulas

Complementary events: The complement of event A is everything not in A . Complementary events are mutually exclusive events and together make up the sample space. The probability of the sample space is one.
Independent events: The occurrence of any one of the events does not affect the probabilities of the occurrences of the other events. Events A and B are independent if probability of A given B equals probability of A.
Dependent events (or non-independent events): Events that are not independent, i.e., $P(A$ given $B) \neq P(A)$.
Mutually exclusive events (or disjoint events): If event A occurs, then event B cannot occur, and conversely.
De Morgan's Rule (one form): Via a double complement, A or $B=\left(A^{c} \text { and } B^{c}\right)^{c}=" n o t[(\operatorname{not} A)$ and $(\operatorname{not} B)]$ ". For example, "I want A, B, or both to work" (Reliability) equates to "I do not want both A and B not to work" (Safety).

Event	Details	Formula (from English to mathematical operations)
A	Probability of $\mathrm{A}, \mathbf{P}(\mathbf{A})$	$P(A)$ is at or between zero and one: $0 \leq P(A) \leq 1$
$\operatorname{not} A, \mathbf{A}^{\text {c }}$	A^{c} is the complement of A	Probability of not $A=P\left(A^{c}\right)=1-P(A)$
A and B	A and B are independent events	$P(A$ and $B)=P(A) * P(B)$
	A and B are dependent events	$\mathbf{P}(\mathbf{A}$ and $\mathbf{B})=P(A)^{*} P(B \mid A)=P(B) * P(A \mid B)$ as 2 forms
	A and B are mutually exclusive events	$P(A$ and $B)=0$
A or B	A and B are independent events	$\begin{aligned} & P(A \text { or } B)=P(A)+P(B)-P(A)^{*} P(B) \text { conveniently expands to } \\ & =1-[1-P(A)]^{*}[1-P(B)] \text { or is obtained from De Morgan's Rule } \end{aligned}$
	A and B are dependent events	$P(A$ or $B)=P(A)+P(B)-P(A) * P(B \mid A)$ as 1 of 2 forms
	A and B are mutually exclusive events	$P(A$ or $B)=P(A)+P(B)$
A given B, A\|B	Conditional: outcome of A given B has occurred	$P(A$ given $B)=P(A \mid B)=P(A)^{*} P(B \mid A) / P(B)\left[B a y e s^{\prime}\right.$ Thm $]$ To make this formula, solve the 2 forms in " A and B " for $P(A \mid B)$

