Basic Probability Formulas

<u>Complementary events</u>: The complement of event A is everything not in A. Complementary events are mutually exclusive events and together make up the sample space. The probability of the sample space is one.

<u>Independent events</u>: The occurrence of any one of the events does not affect the probabilities of the occurrences of the other events. Events A and B are independent if probability of A given B equals probability of A.

<u>Dependent events</u> (or non-independent events): Events that are not independent, i.e., $P(A \text{ given } B) \neq P(A)$.

Mutually exclusive events (or disjoint events): If event A occurs, then event B cannot occur, and conversely.

<u>De Morgan's Rule</u> (one form): Via a double complement, A or $B = (A^c \text{ and } B^c)^c = \text{"not } [(not A) \text{ and } (not B)]$ ". For example, "I want A, B, or both to work" (Reliability) equates to "I do not want both A and B not to work" (Safety).

Event	Details	Formula (from English to mathematical operations)
A	Probability of A, P(A)	$P(A)$ is at or between zero and one: $0 \le P(A) \le 1$
not A, A c	A ^c is the complement of A	Probability of not A = P(A ^c) = 1 - P(A)
A and B	A and B are independent events	P(A and B) = P(A)*P(B)
	A and B are dependent events	P(A and B) = P(A)*P(B A) = P(B)*P(A B) as 2 forms
	A and B are mutually exclusive events	P(A and B) = 0
A or B	A and B are independent events	$P(A \text{ or } B) = P(A) + P(B) - P(A)^*P(B)$ conveniently expands to = 1 - [1 - P(A)]*[1 - P(B)] or is obtained from De Morgan's Rule
	A and B are dependent events	P(A or B) = P(A) + P(B) - P(A)*P(B A) as 1 of 2 forms
	A and B are mutually exclusive events	P(A or B) = P(A) + P(B)
A given B, A B	<u>Conditional</u> : outcome of A given B has occurred	P(A given B) = P(A B) = P(A)*P(B A) / P(B) [Bayes' Thm] To make this formula, solve the 2 forms in "A and B" for $P(A B)$